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Numerical methods are used to study the way in which the number of cells present 
in the Taylor experiment changes as the length of the comparatively short annulus 
varies. The structure of the solution surface is determined by following paths of 
singular points in a finite-element discretization of the axisymmetric Navier-Stokes 
equations. The numerical results are compared with the experiments of Benjamin 
(1978b), Mullin (1982) and Mullin et al. (1982). The calculations are in agreement with 
the qualitative theory of Benjamin ( 1 9 7 8 ~ )  and Schaeffer (1980) except that  in the 
interaction involving four- and six-cell flows, the numerical calculations indicate that 
the six-cell flow can become unstable owing to perturbations that are antisymmetric 
about the midplane. 

1. Introduction 
In  this paper we study Taylor-Couette flow in a comparatively short annulus using 

numerical methods. The inner cylindrical wall rotates and the outer cylinder and 
both ends are stationary. The principal phenomenon under study is how the number 
of Taylor vortices present in the primary $ow changes as the length of the annulus 
varies. The primary flow may be defined as that produced by slowly increasing the 
speed of the inner cylinder from rest. It is thus smoothly connected to the uniquely 
defined flow at  low Reynolds number. 

This problem appears to have been studied first by Benjamin (1978a,b). In  his 
apparatus he was able to vary the angular speed, 52, of the inner cylinder, and the 
length, I, of the annulus ; in any particular experimental run I is fixed and Q varied. 
The non-dimensional speed is the Reynolds number defined as R = 52rld/v,  where 
rl is the radius of the inner cylinder, d = r 2 - r 1  the width of the annulus, r2  the radius 
of the outer cylinder and v the kinematic viscosity of the fluid. The non-dimensional 
length is the aspect ratio defined as r = l / d .  Benjamin’s data are shown in figure 1. 
For aspect ratios less than that corresponding to point C, the primary flow is 
symmetrical and has two Taylor cells. The cells develop, as R is gradually increased 
through a narrow range of values, in a continuous manner. The absence of a definite 
critical value of R for the onset of cells is due to the presence of the ends 
(Kusnetsov et al. 1977 ; Benjamin & Mullin 1982). For aspect ratios greater than that 
corresponding to B the primary flow smoothly develops four cells. I n  the range of 
aspect ratios between B and C the primary flow first develops a weak four-cell 
structure but as the line BC is crossed this changes abruptly to a two-cell flow. If the 
Reynolds number is then reduced, so that DC is crossed, this two-cell flow collapses 
back to the weak four-cell flow. Thus the experimental observations exhibit a 
hysteresis phenomenon. Using ideas from elementary catastrophe theory and 
abstract mathematical results from the theory of the Navier-Stokes equations, 
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Reynolds number 

FIGURE 1. Experimentally ( + ) and numerically ( - ) determined bifurcation set in the ( R ,  r ) -plane 
for two-cell and four-cell flows. Experimental points from Benjamin (1978b). An enlargement of the 
region near the transcritical and hysteresis points is shown in the inset. 

Benjamin interpreted his data as follows : at G the primary flow has a non-degenerate 
hysteresis point so that for aspect ratios greater than G the primary solution branch 
has an S shape with the middle part representing an unstable steady flow. At H the 
two-cell and four-cell flows exchange roles as the primary flow through a transcritical 
bifurcation point. It should be noted that Benjamin’s analysis of his experimental 
data requires very little input from the Navier-Stokes equations. Consequently his 
theory cannot predict which way the cusp a t  C points. Indeed, Mullin (1982) found 
that for the exchange process involving four-cell and six-cell, six cell and eight-cell, 
and ten-cell and twelve-cell flows the cusp pointed upwards, whereas it pointed 
downwards for the eight-cell-ten-cell exchange. A similar result, i.e. the cusp 
pointing upwards, for the four-cell-six-cell exchange was found by Mullin, Pfister & 
Lorenzen (1982) in an experiment with a smaller radius ratio. 

An important qualitative analysis of the effects of the ends of the annulus on the 
primary-flow exchange process was provided by SchaeEer (1980). He introduced an 
extra parameter, 7, into the idealized problem, where 0 < 7 < 1. The value of 7 
determines the boundary conditions imposed on the end faces : 7 = 0 corresponds to 
periodic boundary conditions, whilst r = 1 corresponds to the physically realistic 
no-slip boundary conditions. The parameter 7 is regarded ;ts a homotopy parameter 
which interpolates between the two extremes. Schaeffer applied the Lyanpunov- 
Schmidt procedure to the periodic problem a t  a value of the aspect ratio such 
that the two-cell and four-cell modes bifurcate at the same Reynolds number. This 
leads to a set of two nonlinear equations in two unknowns, which are essentially the 
amplitudes of the two-cell and four-cell flow. These equations contain certain 
parameters, which were assumed to satisfy various inequadities. Schaeffer analysed 
the effects of the ends by applying the methods of singularity theory (Golubitsky & 
Schaeffer 1979) to determine the possible bifurcation diagrams for small positivc 
values of 7. Schaeffer further argued that since he obtained a definite set of 
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bifurcation diagrams, the qualitative features of the flow would be similar for small 
r and for r = 1 .  Indeed Schaeffer’s analysis produced precisely the same quali- 
tative effects as had been observed by Benjamin. Schaeffer’s analysis is important 
because it provides a definite link between the Navier-Stokes equations and the type 
of phenomena observed by Benjamin. Becausc Schaeffer did not carry out explicit 
calculations in his Lyanpunov-Schmidt reduction procedure, he was unable to 
predict the direction in which the cusp points. Further, his analysis, strictly 
speaking, applies to the exchange process between 2k and 2 k + 2  cells where 12 2 2. 
Thus the case studied by Benjamin is excluded. The reason for this is that Schaeffer’s 
model has cubic nonlinearities, whereas the case k = 1 would also involve quadratic 
terms. However Schaeffer points out (Schaeffer 1980, footnote to p. 313) that, under 
certain weak conditions, the quadratic terms may not affect the qualitative 
behaviour of the equations. 

Schaeffer’s model has been studied, using perturbation methods, by Hall (1980, 
1982). The degeneracy that gives rise to the quadratic terms mentioned above 
prevented Hall from producing results to compare with all Benjamin’s data. In 
particular, he was unable to calculate the phenomenon associated with C D  in 
figure 1 ,  which he suggests may have to be obtained by numerical means. In his 
second paper Hall (1982) treated the problem of the exchange between the four-cell 
and six-cell flow. He found that the constants appearing in the Schaeffer model lead 
to a bifurcation diagram with the cusp pointing upwards, which is consistent with 
the observations of Mullin (1982). Howevcr, the extent of the region over which 
hysteresis could be observed was much smaller in Hall’s calculations than in the 
experiments. This is perhaps not surprising since the approximations used by Hall 
are likely to have large errors when the perturbation parameter, r ,  is close to 1 
Nevertheless, Hall’s work is significant in that it is the first attempt to make a 
quantitative connection between the Navier-Stokes equations and the flows in the 
Taylor experiment with small aspect ratio. 

It is apparent from the above description of previous theoretical work on this 
problem that the essential difficulty is that  the ends of the cylinders always induce 
an O(1) perturbation of the basic flow. Thus it seems unlikely that perturbation 
methods will be able to give sufficiently accurate results for a realistic comparison 
with experiment. A further point to vonsider is that  both Schaeffer and Hall assumed 
that the modes interacting during the exchange process are all symmetric about the 
mid-plane of the apparatus ; since the flows observed in the primary-flow exchange 
have this feature the assumption seems reasonable. However, as we show later. in the 
four-six-cell exchange there is a range of aspect ratio over which the six-cell flow 
becomes unstable to non-symmetric disturbances ; all the non-symmetric solutions 
are in fact unstable but they do affect indirectly what is observed. Tuckerman (1983) 
and Schrauf (1986) have shown that symmetry breaking is important in the related 
spherical Taylor-Couette problem. 

In  this paper we study the primary-flow exchange process using numerical 
techniques similar to those used by the author to study two-cell and single-cell flows 
(Cliffe 1983). The axisymmetric Navier-Stokes equations and appropriate boundary 
conditions are discretized using the finite-element method to give a finite set of 
nonlinear equations which depend on three parameters the Reynolds number, 
aspect ratio and radius ratio defined by 7 = r l / r 2 .  Continuation methods and 
numerical methods for bifurcation problems are then applied to this set of equations. 
In particular we calculate paths of limit points and symmetry-breaking pitchfork 
bifurcation points which correspond to the loci of wllapse points observed in the 

1 F I. II 19i 
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experiments. Certain points on these paths of singular points cborrespond to morc 
complex singularities (having higher codimension) and we also prescnt calculations 
of these special points. We have used grids sufficiently fine so that the errors in our 
calculated critical points are lcss than 1 YO. Thus we arc able to make a quantitative 
comparison of the numerical results with the expcriments quoted above. The 
agreement is, on the whole, quite satisfactory. The calculations also reveal that  for 
the four-six cxchangc the situation is morc complex than thc Schaeffer modcl 
indicates, with asymmetric solutions of the Navier-Stokes equations present. The 
rest of the paper will be as follows. In $ 2  we describe the numerical methods used. In 
$ 3  the results for the two-four and four-six exchanges art described and compared 
with the cxperimental data of Benjamin (19780), Mullin (1982) and Mullin rt nZ. 
(1982). Some conclusions are drawn in $4. 

2. Numerical methods 
In cylindrical polar coordinates ( r* ,  $, z*)  with the origin midway between the ends 

of the annulus, and velocity U* E (u:, uz, u;), the cquations for axisymmetric flow 
of a viscous fluid are 

In the above equations r ,  z ,  U and p are given by 

where ,u is the dynamic viscosity, SZ is the angular speed of the inner cylinder, 
d = r 2 - r , .  /3 = r,/d = v / ( l - v )  and 9 = r 1 / r 2  is thc radius ratio, where r2 and rl  are 
the radii of the outer and inner cylinders respectivcly. The aspect ratio r = Z/d and 
the Reynolds number R = rl Q d / v ,  wcre v is thc kinematic viscosity. 

Equations (2.1)-(2.4) hold in the region 

f> = ( ( T ,  z )  10 < r < 1,  -0.5 < z < 0.5). (2.5) 

The boundary conditions are that u, and u, are zero on the entire boundary of I) ,  and 
that u6 is zero on the outer cylinc-ler ( r  = 1) and one on the inner cylinder ( r  = 0). On 
the ends ( z  = +0.5), u+ is zero except near the inner cylinder where it increases 
smoothly to one over a small distance, E The exact value of c and the variation of 
u6 will depend on thc details of the experiment; howcver. we have found the results 
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to be insensitive to the value oft: and therefore conclude that any sufficiently small 
value will be adequate. 

4 s  a starting point for the finite-element discretization, (2.1)-(2.4) are converted 
into a nonlinear operator equation in an appropriate Hilbert space. When this 
Hilbert space is replaced by a finite-dimensional (finite-element) subspace the result 
is a finite-element approximation of (2.1)-(2.4). The mathematical details of this 
procedure will not be presented here since they are not essential to the present paper 
and have been covered elsewhere (Cliffe 1983; Cliffe & Spence 1984, 1986). In the 
method we use, the region D is covered by a mesh of nine-node quadrilateral 
elements ; on each element the components of velocity are approximated by 
biquadratic polynomials and the pressure is approximated by piecewise linear 
functions which are not, in general, continuous across element boundaries (Cliffe, 
Jackson & Greenfield 1982; Engleman et al. 1982; Cliffe 1983). 

The finite-element equations may be written in the form (Cliffe & Spence 1984, 
1986) 

f ( x , R , r )  = 0, f: x x  R X  R + X ,  (2.6) 

where x is a vector containing all the velocity and pressure degrees of freedom. The 
space X is the set of all possible x and is equivalent to R N ,  where N is the total 
number of degrees of freedom in the problem. The f in (2.6) has an important 
symmetry property which reflects the fact that the Navier-Stokes equations are 
invariant under reflection about the midplane of the annulus. It can be shown (Cliffe 
& Spence 1984, 1986) that, provided the mesh is symmetric, there exists a linear 
mapping, S, from X to X such that 

S + I ,  S2 = I and f (Sx, R, r )  = Sf ( x , R ,  r )  X E  X, R, R. (2.7) 

We used the Keller arclength-continuation metJhod to calculate individual solution 
branches (Keller 1977). The stability limits of the various flows correspond to either 
simple limit points or symmetry-breaking bifurcation points. Limit points were 
calculated by applying Keller arclength continuation to the following system of 
equations (Moore & Spence 1980; Jepson & Spence 1985): 

with y = ( x , y , , R ) ,  V E X  and ZEX' (the dual of X).  
More degenerate points may be encountered along a path of limit points. I n  a 

two-parameter problem there are just two possibilities, namely a non-degenerate 
hysteresis point (which we denote by H) and a transcritical bifurcation point (which 
we denote by T). The projection of the path of limit points onto the (R, 0-plane has 
a characteristic cusp shape at H and a turning point at T. Details of the numerical 
methods used to compute these points may be found in Cliffe & Spence (1986) and 
Jepson & Spence (1985). 

We now consider the implications of the symmetry property (2.7). The mapping 
S induces a natural decomposition of X into 

x= X,+X,,  (2.9) 

where x, = { X E X I S X  = x}, x, = { X E X I S X  = -x}, (2.10) 

:I 2 
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consist of the symmetric and antisymmetric elements of X respectively. Paths of 
symmetry-breaking bifurcations were calculated by applying Keller arc-length 
continuation to the following extended system (Werner & Spence 1984). 

(2.11) I ( f(X@JJ 

y = (x ,v , ,R)  E y 

F :  Y x  R +  Y 
F ( y , r ) =  f , (x ,R,T)q =0,  Y = X , X X , X R  . 

It is important t o  note both the similarity with (2.8) antl the essential diffkrence, 
namely that x must belong to X ,  and v, must belong to X,. Thus the basic solution 
is symmetric but the cigenvector is antisymmetric so that the bifurcating branch is 
asymmetric. The set of points ( x , R ,  r )  such that (2.11) is satisfied by ( y .  r )  defines a 
curve which lies on the symmetric solution surface. This curve is the intersection of 
the surface of asymmetric solutions with the symmetric ones 

A path of symmetry-breaking bifurcation points may itself have a limit point. 
Cliffe & Spence (1984) call this type of singularity a coalescence point because two 
symmetry-breaking bifurcation points coalesce at such a point. There are two types 
of coalesence point which we denote by C+ antl C-. At C+ an isola of asymmetric 
solutions is born whereas at C- a pair of asymmetric solution branches intersect on 
the symmetric solution branch 

Another type of singularity that can occur on a path of symmetry-breaking 
bifurcation points is a quartic symmetry-breaking bifurcation point, which we 
denotc by Q (Cliffe & Spence 1984). Here the bifurcating asymmetric branch has 
quartic dependence on the excess Reynolds number near the singularity rather than 
quadratic dependence. For values of r on one side of the singular point the 
bifurcation is supercritical whcreas on the other side it is subcritical. We also note 
that a pair of paths of limit points on the asymmetric solution surface splits off from 
the symmetric solution a t  Q. 

The final typc of singularity that can occur along a path of symmetry-breaking 
bifurcation points is called a double singular 8-point, which we shall denote by 1) 
(Werner 1984). This is a point at which a limit point and symmetry-breaking point 
coincide. 

Details of the numerical methods used to compute the points C, Q and D are given 
in Cliffe & Spence (1986) and Cliffe, Jepson & Spence (1986). It IS also important to 
note that in calculating symmetry-breaking singular points the symmetry condition 
can be used to reduce, by approximately half, the number of degrees of freedom in 
the problem (Cliffe & Spence 1986). This is done, essentially. by discrctizing the lower 
(i.e. z < 0) half of the domain D. 

A typical mesh is shown in figure 2. All the meshes used were uniform in the r -  and 
z-directions with the exception of the elements in the corners next to the inner 
cylinder where local refinement of the type shown in figure 2 was used The purpose 
of this refinement was to model the rapid variation in the azimuthal velocity 
component between the inner cylinder and ends of the cylinder. For calculations of 
the symmetric flows and for the symmetry-breaking bifurcation points only half of 
the region U nerd be discrctized (Cliffe & Spence 1986), whcreas the full region D 
must be used for the non-symmetric solutions. The meshes for the full region may be 
characterized by the triple ( N R , N Z ,  N C ) ,  where LVR and N Z  are thc numbers of 
elements in the r- and z-directions respectively and the mesh has 2NC- 1 elements 
in each corner. A mesh for half the region D will be dcnoted by (SR, N Z ,  LVG, 8) and 
is essentially cquivalerit to that  part of a (NR, 2 N Z ,  KC)  mesh with z < 0. Thc total 
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FIGCRE 2. A ( 5 , 3 0 , 5 )  mesh and an enlargement of the local refinement used in the corner 

Critical R at 

5. 10, 5 . 8  139.71 87.650 
8,10,5, AS 138.82 87.571 
LO, 20 ,5 ,  rs' 138.58 87.566 
15,30,5, s 138.41 87.564 

TABLE 1 .  Effect of mesh refinement, 011 the  critical Reynolds numbers at the two extremes of the  
path of limit points for the teo-four exchange. 

Critical R at 
Mesh aspect ratio 3.4 aspect ratio 4 

number of degrees of freedom on a (NR,NZ.NC) mesh is 3(2NR+1)(2NZ+l) 
+60(NC-1)+3NRNZ+12(NC-l) and on a ( N R , N Z , N C ' , S )  mesh is 3(2NR+1)  
(2NZ+ 1)+30(NC-1)+3NRNZ+6(NC-l). We found, as previously (Cliffe 1983), 
that the results were insensitive to the values of NC provided it was greater than 
about 4. The calculations for the two-four exchange used a (5,10,5, S )  mesh having 
1107 degrees of freedom; and, for the four-six exchange (5,15,5, S )  and ( 5 , 3 0 , 5 )  
meshes having 1512 and 2991 degrees of freedom respectively. As an exception the 
path of symmetry-breaking bifurcation points for r < 5.0 was computed using a 
(10,30,5, S) mesh having 5007 degrees of freedom. The results were checked for 
accuracy by repeating various calculations on a sequence of finer meshes. These mesh 
refinement calculations were performed a t  the extremes of the paths of limit points 
and symmetry-breaking bifurcation points where, because the Reynolds numbers are 
higher, the discretization errors are expected to be greatest. Refinement checks were 
also done at  the degenerate points H, T, Q ,  C+ and C-. 

The results for the extremes of the path of limit points in the two-four exchange 
are shown in table 1. From them we estimate that the error in the critical Reynolds 
number using the (5,10,5,X) mesh is about 0.1 % a t  aspect ratio 4 and about 1 % a t  
aspect ratio 3.4. The results of the other checks indicate that the error in the critical 
Reynolds number along all the computed paths of limit points and symmetry- 
breaking bifurcation points is a t  most 1 %. The error in the critical values of Reynolds 
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number and aspect ratio for the degenerate points is much less than this, typically 
of order 0.1 YO. t 

As a further check the code was used to calculate the critical Reynolds numbers 
for the onset of Taylor vortices in the periodic case ; the meshes used here gave results 
that agree with those of Roberts (1965) to 0.5%. On refining the mesh the results 
converged to Roberts’ values. 

3. Results 
In this section we present the results of our numerical (:alculations and compare 

them with the available experimental data. The experiments determined the loci of 
points in the (R, 4-plane which mark the loss of stability of various flows. These loci 
correspond to paths of singular points as described in the previous section, and the 
principal comparison will be for this type of data. We also present computed 
bifurcation diagrams, that is slices through the solution surface for fixed values of 
aspect ratio r. The two-four exchange process is the simplest, being essentially as 
described by Schaeffer (1980), and so we present those results first. The four-six 
exchange is complicated by the presence of non-symmetric solutions, and the 
bifurcation diagrams are much more complex than those proposed by Benjamin and 
Schaeffer to explain the experiments. 

3.1. The two-four exchange 
The two-cell primary branch was calculated up to a Reynolds number of 150 a t  an 
aspect ratio of 3 using the Keller arclength-continuation method. The Reynolds 
number was then fixed and the aspect ratio increased up to 4. At this aspect ratio the 
primary flow has four cells; so, as the Reynolds number is reduced, the two-cell flow, 
which is now a secondary mode, encounters a limit point. At this point in the 
experiments the two-cell flow collapses catastrophically and the four-cell flow 
quickly appears. The two-cell branch a t  aspect ratio 4 ‘was computed using Keller 
continuation. Along this branch the Reynolds number decreases until the limit point 
mentioned above is encountered. This is easy to detect as the Reynolds number 
begins to increase after the limit point has been passed, though the solution is now 
unstable, which is indicated by a change in the sign of the determinant of the 
Jacobian matrix. Once the limit point was found approximately by the above 
method, the system (2.8) was used to determine its exact location. The entire path 
of limit points was then calculated using Keller continuation applied to (2.8). 

The projection of this path onto the (R, 4-plane is shown in figure 1. The region 
in the small square is shown in magnified form in the inset. This clearly indicates the 
presence of a non-degenerate hysteresis point, H, and a transcritical bifurcation 
point, T. This is in agreement with Benjamin’s (19786) interpretation of his data. 
However, whereas Benjamin observed hysteresis for aspect ratios between 3.6 and 
3.72, the calculations have hysteresis only between 3.7139 and 3.7154; a very much 
smaller range. The calculated cusp does point downwards in agreement with the 
experiments. 

We also note that Benjamin’s critical Reynolds numbers are, in general, 5-10 % 
lower than those calculated. Cliffe & Mullin (1985) noticed a similar discrepancy in 
critical Reynolds numbers, for another type of flow, between computed values and 
those measured in the same apparatus as was used by Benjamin (1978 b)  . They also 

t The tables containing these results have been lodged with the Journal of Fluid Mechanics 
editorial offic~ for anyone who wishes to  obtain a copy. 
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pointed out that the outer cylinder, which was made of Perspex tubing, appeared 
to have become distorted. Thus it seems likely that the quantitative differences 
betwccn our calculations and Benjamin’s experiment are due to the above- 
mentioned distortions. It should be noted that the calculated hysteresis would be 
virtually unobservable in an experiment. 

Finally in this subsection we present some numerically calculated bifurcation 
diagrams, that  is slices. Nith r fixed, through thc solution surface. The radial 
velocity on the midplanc a t  the gap centre is plotted against Reynolds number for 
all the solution branches at four different aspect ratios. In  figure 3 ( a )  the two-cell flow 
is thc primary flow, as can be seen from the fact that  the radial velocity is positive. 
Figure 3 ( b )  is in the hysteresis region and illustrates the fact that  there is virtually 
no hysteresis. Figure 3(c)  is at the aspect ratio that corresponds to the transcritical 
bifurcation point and again illustrates how close this is to a pitchfork bifurcation 
point Finally figure 3 ( d )  shows the four-cell flow as the primary flow. The various 
solution branches represented in figure 3 were calculated using the Keller arclength 
method, each branch having about 20 points; the curves were produced using a 
spline tit to the radial velocity values a t  the calculated points. 

3.2. The four- six exchange - numwical details 
We cxpected the four-six exchange to be similar to the two-four exchange 
described in the previous section However, it turns out that the situation is 
complicated by the presence of asymmetric solutions of the Navier-Stokes equations. 
All these solutions are unstable for the range of aspect ratios we considered and so 
are not observable. but they do affect the observable flows by reducing the 
parameter ranges over which they are stable. In the Benjamin-Sehaeffer approach 
to the problem all the flows considered are symmetric and so by implication these 
authors only allow for symmetric disturbances in their stability analysis. In fact, as 
we shall demonstrate, the six-cell flow can be unstable to antisymmetric disturbances. 

In this subsection we present the numerical details of the calculations for the 
four-six exchange. The details of the bifurcation structure will be discussed in $3.3. 
The four-cell primary branch was calculated up to a Reynolds number of 300 a t  an 
aspect ratio of 4 using the Keller arclength-continuation method. The radius ratio 
was fixed a t  0.6 to correspond to the data of Mullin (1982). With the Reynolds 
number tixed at 300 the aspect ratio was increased to  6. At this aspect ratio the 
primary flow has six-cells and, as in $3.1,  when the Reynolds number is reduced a 
limit point is encountered which marks the lower limiting Reynolds number for the 
four-cell secondary mode. Once the limit point was located the path of limit points 
was calculated using Keller continuation applied to (2.8). The projection on the 
(A, r)-plane of this curve is shown in figure 4 as the solid line. The points marked T 
and H are transcriticd bifurcation and non-degenerate hysteresis points respectively. 

We located the symmetry-breaking bifurcation on the six-cell secondary branch at 
aspect ratio 5 0 by computing this flow on the full grid. As R was increased past the 
bifurcation the determinant of the Jacobian matrix changed sign ; we thus located 
the point approximately. Keller arclength continuation applied to (2.11) was used to 
compute the path of symmetry-breaking bifurcations, which is indicated by the 
dashed line in figure 4. 

The various degenerate points, H, T, Q ,  C+, C- and 1) were detected and computed 
using the techniques described in Cliffe & Spence (1986). 

Five bifurcation diagrams shown in figure 5 were computed a t  values of aspect 
ratio between 5.0 and 5.6, and these diagrams were obtained by solving the 
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FTGURE 3 (u, b) .  For caption see facing page. 
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FIGURE 3 .  Kumerically calculat.ed st.at.e diagrams for the two-four exchange. The radial component 
of velocity at the point (0.5.0) is plotted against Reynolds number for various aspert ratios. (a )  
I-= 3.6. ( h )  3.715, (c) 3.71541. ( d )  4.0. 
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FIGURE 4. Critical loci for four- and six-cell modes with radius ratio 0.8: numerically 
calculated fold curve ; ~ ~ - -, numerically calculated path of symmetry-breaking bifurcation 
points ; ~~ numerically calculated fold curve for asymmetric solution surface; + , experimental 
values for four- and six-cell collapse points (from Mullin 1982). An enlargement of the region near 
the double singular S-point, D, is shown in the inset. 

Navier-Stokes equations using Keller arclength continuation. All the solution 
branches were obtained either as the primary flow starting from zero Reynolds 
number, or else by branching away from either the path of limit points or the path 
of symmetry-breaking bifurcation points. For each aspect ratio there are two 
diagrams which show how the symmetric and antisymmetric parts of the solution 
behave. The u, component a t  (0.5,O) and u, component a t  (0.7,O) were taken as the 
measures of the symmetric and antisymmetric parts of the solution. The asymmetric 
solutions (i.e. solutions having a non-zero antisymmetric part) are all shown by 
dashed lines ; s denotes a stable and u an unstable part of each curve. I n  the plots of 
the antisymmetric component the occurrence of a singularity in the symmetric 
solution is indicated by a dot. Some care is needed in interpreting the plots of the 
symmetric component since two solutions may have the same value of u,(0.5,0) but 
riot coincide. This leads to intersections of the curves that do not correspond to 
bifurcation points. For example in figure 5 ( c )  the upper dashed line intersects the 
middle solid line; this is not a bifurcation point as may be seen from examining figure 
5 (d ) .  Indeed a careful examination of both the symmetric and antisymmetric plots 
should avoid any such confusion. 

The curves shown in the figure were obtained by fitting a cubic spline to the values 
of the two velocity components computed on a (5,15,5, S) mesh for the symmetric 
solutions, and a ( 5 , 3 0 , 5 )  mesh for the asymmetric solutions. The points themselves 
are not shown for the sake of clarity, but each diagram is based upon between 100 
and 150 points. Incidentally the calculation of these diagrams represents well over 
half the computational effort required for this problem. 
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FIGURE 5.  Numerically calculated state diagrams for the four-six exchange for various aspect 
ratios. ( a ,  c, e ,  g, i) the radial component of velocity a t  the point (0.5,O) is plotted against Reynolds 
number (this measures the symmetric part of the solution). ( b , d ,  f . h , j )  the axial component of 
velocity at the point (0.7,O) is plotted against Reynolds number (this measures the antisymmetric 
part of the solution) ; a solid dot indicates a singularity in the symmetric solution. -, symmetric 
solution ; - - - ~ , asymmetric solution. Stable branches are indicated by s and unstable by u. 
(a,b) r= 5.0, (c ,d)  5.3445, (e , f )  5.3798, ( g , h )  5.4, ( i , j )  5.6.  
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Similar techniques were used to compute the path of limit points and the path of 
symmetry-breaking bifurcations for a radius ratio of 0.507 which corresponds to the 
experiment of Mullin P t  al. (1982). The results arc shown in figurc 8. 

3.3. The four-six exchange - bifurcation structure 
In this subsection we discuss in detail the bifurcation structure associated with 
the four-six exchange and its relationship to the experimental observations of 
Mullin (1982). The situation is complicated by the presence of symmetry-breaking 
bifurcations. In  order to make the presentation as clear as possible we shall discuss 
the symmetric flows first. We shall use the notation T ( X )  ( R ( X ) )  to denote the aspect 
ratio (Reynolds number) at the point X in figure 4, where X is one of H, T, Q ,  C+, 
C-, D. 

The computed path of limit points of the symmetric solution is shown in figure 4. 
For aspect ratio less than T(T) the bifurcation diagram looks like figure 5 ( a )  
(ignoring for the moment the dashed line). The four-cell primary flow develops 
smoothly as R is incrcased from zero and there is a branch of six-cell flows for 
sufficiently large R. The lower stability limit of the six-cell flow is determined by the 
limit point. As the aspect ratio is increased the four-cell branch and the lower part 
of the six-cell branch approach each other until, at aspect ratio T(T),  they touch, 
giving rise to the transcritical bifurcation shown in figure 5(c ) .  The situation for 
slightly larger aspect ratio is shown in figure 5 ( e ) .  Here the primary branch first 
develops a weak four-cell structure until a limit point is encountered. At this point 
the weak four-cell flow collapses and a six-cell flow is formed. Thus in the aspect-ratio 
range between T(T) and T(H) hysteresis phenomena are observable. Figure 5 ( e )  also 
shows that the four-cell flow is a secondary mode in this region. Streamline plots of 
the four- and six-cell flows in this hystcresis region are shown in figure 6. As the 
aspect ratio is increased further the two limit points on the six-cell branch approach 
each other and finally coalesce a t  the nondegenerate hysteresis point H. For larger 
aspect ratios the primary flow has six cells and the bifurcation diagram looks like 
figure 5 ( i ) .  

This sequence of events is precisely the same as Schaeffer (1980) obtained from his 
analysis. It is also consistent with the work of Hall, (1982) in that  the cusp points 
upwards ; however, Hall’s analysis gave a much smaller region of hysteresis than our 
numerical calculations. This is not particularly surprising since he was applying a 
perturbation method with the small parameter probably outside the region of 
validity for the method. In figure 4 we have also shown Mullin’s (1982) experimental 
data. For the part of the path of limit points above the point marked I) the 
agreement between the data and the numerical calculations is very good ; however, 
for aspect ratios less than T( D) there is a considerable deviation. The reason for this 
is that for valucs of aspect ratio less than T(D) the six-cell secondary mode loses 
stability, owing to antisymmetric disturbances, at Reynolds numbers greater than 
those corresponding to the limit point. The situation is illustrated in figures 5 (a) and 
5 ( b )  for aspect ratio 5.0. For Reynolds numbers greater than 118 the upper part of 
the six-cell branch is stable. At a Reynolds number of 118 there is a supercritical 
symmetry-breaking bifurcation and a pair of unstable asymmetric solutions (dashed 
lines) branch away from the symmetric solution. The six-cell flow is unstable for 
Reynolds numbers less than 118 and so collapses to a four-cell flow. Thus for aspect 
ratios below r ( D ) ,  Mullin’s experimental measurements of the stability limit of the 
six-cell flow correspond to symmetry-breaking bifurcation points. This path of 
computed symmetry-breaking bifurcations is shown by the dashed line in figure 4 
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I 0 

FIGURE 6. Streamline plots with inner cylinder on right ( a )  stable four-cell flow a t  aspect ratio 5.4 
and Reynolds number 94.1; (b) stable six-cell flow at  aspect ratio 5.4 and Reynolds number 81.9; 
(c) asymmetric six-cell flow at aspect ratio 5.0 and Reynolds number 129.9. 

and it can be seen that the agreement between calculation and experiment is 
good. 

Thus the computed stability limits of the four- and six-cell flows in this problem 
agree rather well with the experimental data of Mullin (1982). It is also interesting 
to note that the problem appears to be somewhat more complex than Schaeffer's 
analysis would indicate in that asymmetric modes play a role in the exchange 
process, albeit an indirect one since they are all unstable. 

We turn now to the asymmetric solutions. The presence of symmetry breaking and 
the resulting asymmetric solutions lead to an unexpectedly complex solution set. We 
shall discuss the bifurcation structure implied by figure 4 by making use of the 
bifurcation diagrams in figure 5, and describe how the bifurcation picture changes as 
the aspect ratio increases from 5.0 to 5.6. For aspect ratios less than I-(("+) the picture 
is relatively straightforward ; a pair of unstable asymmetric six-cell flows branch 
away supercritically from the upper part of the six-cell branch (see figures 5a  and 
5 h )  This pair of solution branches exists for increasing R and has no bifurcation 
points or singularitics (at least up to R = 280 where our calculations stop). A 
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FIGITRE 7 A schematic plot of a measure of the antisymmetric c ~ ~ m p o n e n t  of the  solution against 
R in the region near D, Q and C- ( c a f .  figure 4). ( a )  T(U) > r > r(Q). (0) f = r(Q), (c) r(Q) < r < 
r(c-). ( d )  r = qc-), ( e )  r > r(c-). 

streamline plot of this unstable asymmetric six-cell flow is shown in figurc 6(c )  (the 
aspect) ratio is 5.0 and H is about 10% above the bifurcation value). The two celis just 
below the midplane are slightly smaller than those above it. The two branches are 
mirror images of each other so that the other branch would have the smaller cells 
above the midplane. 

At an aspect ratio of I '(C+) a loop of asymmetric solutions is formed on the lower 
(unstable) part of the six-cell solution branch. This loop can lie clearly seen in figure 
5 ( d ) .  As the aspect ratio is reduced towards T ( C + )  the two symmetry-breaking 
bifurcations at the extremes of thc loop approach cach other and cventually coalesce 
at C'. 

The next significant event occurs when the aspect ratio reaches T(T) where the 
four-cell branch touches the lower part of the six-cell branch producing the 
transcritical bifurcation in figure 5 (c). Note that the four-cell branch touches the six- 
cell branch a t  a point lying between the two extremes of the asymmetric loop that 
formed a t  C+.  This can be secn from figure 5 ( d )  whtm the solid dot at Reynolds 
number - 118 indicates the transcritical bifurcation point. The solid dot a t  Reynolds 
number - 81 indicates thc limit point on the six-cell solution branch. The symmetry- 
breaking bifurcation point on the upper part of the six-cell branch is clearly very 
close to this limit point and as the aspect ratio is increased t o  T ( D )  the two points 
coincide. Beyond T ( D )  the symmetry-breaking bifurcation is still supercritical but 
now lies on the middle part of thc primary branch which is, of course, S-shaped in 
the region bctwecn T(T) and T(H). 

In the region between 1'( D) and T ( C - )  this symmetry-breaking bifurcation 
interacts with that at the low-Reynolds-number cxtremc of thc asymmetric loop 
formed at C'. This region is shown in enlarged form in the iriset of figure 4. Figure 
7 shows, in schematic form, the antisymmetric part of the bifurcation diagram in this 
region. (This is the relevant part as the symmetric solution structure does not 
change.) The bifurcat,ion at X in figure 7 corresponds to points on the path between 
D and C- and that at Y to points a t  Reynolds numbers greater than R(CY-). As 
the asp& ratio increases through I ' (Q) the bifurcation 1 changes from being 
supercritical to being subcritical. At Q the bifurcating branches depend on the fourth 
power of the excess Reynolds number. For aspect ratios greater than T(Q) each 
asymmetric branch has a limit point, as shown in figure 7(c).  These paths are 
indicated in figure 4 by the chain dotted line. There is only one line since the limit 
points on the two branches have the same critical Reynolds number (by the 
symmetry of the problem). As thc aspect ratio is increased to T(C) the bifurcations 
at  X and Y gct closer together and coalesce a t  C, as shown in figure 7 ( d ) .  The 
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FIGURE 8. As for figure 4 but with radius ratio 0.507 and experimental points 
from Mullin et al. (1982). 

complete, computed, bifurcation diagram a t  I '(C-) is given in figures 5 ( e )  and 5(f) .  
As the aspect ratio increases beyond T(C-) the asymmetric solutions separate from 
the middle part of the S-shaped primary solution branch (figures 5 g ,  5 h  and 7 e ) .  

Thus for aspect ratios greater than r(C) the asymmetric solutions bifurcate 
subcritically from the symmetry-breaking bifurcation on the upper part of the four- 
cell branch. At lower values of the Reynolds number there is a limit point on each 
of thcse branches which then move off in the direction of increasing R as shown in 
figure 5 (g-j). 

Finally we remark that a similar set of results was obtained a t  a radius ratio of 
0.507 which corresponds to the experiment of Mullin et al. (1982). The computed and 
experimental results are shown in figure 8 where there is a similar level of agreement 
to that in figure 4 bearing in mind the fact that  figurc 8 covers a much smaller range 
of aspect ratios. 

4. Conclusions 
We have applied various methods for solving nonlinear equations and bifurcation 

problems to a finite-element discretization of the steady axisymmetric Navier-Stokes 
equations with boundary conditions appropriate to the Taylor problem with the 
outer cylinder and the ends of the annulus stationary. We have considered the 
problem of the way in which the number of cells prescnt in the primary flow changes 
as the length of the annulus varies. The results for the exchange between a two-cell 
and four-cell flow are in qualitative agreement with the experimental data of 
Benjamin and support his interpretation of the phenomenon. However, there are 
certain quantitative differences, the most notable being the very small range of 
aspect ratios over which hysteresis was present in the calculations compared with 
that observed by Benjamin. The reason for this discrepancy is not obvious. The 
qualitative theory developed by Schaeffer (1980) would appear to give the right type 
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of behaviour of this case in spite of the fact that  his model is only strictly applicable 
to the cases with morc than two cells present. 

The situation with regard to the four-six exchange is more interesting in that for 
a certain range of aspect ratios the six-cell secondary mode loses stability to 
antisymmetric dist'urbances. This possibility was not treated by Schaeffer, who 
assumed that all the flows were symmetric. The presence of asymmetric solutions in 
the exchange process gives rise to  a rich solution structure which we feel is interestling 
in its own right. There is good quantit.ative agreement between the experimental 
data of Mullin (1982) and Mullin et al. (1982) and the calculations for the limits of 
st>ability of the four- and six-cell flows. 

The author is grateful to Dr T. Mullin for providing the experimental data used in 
figures 4 and 8 in tabulated form and to him and the referees for helpful comments 
on the first version of this paper. This work was undertaken as part of the Vnderlying 
Research Programme of the UKAEA. 
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